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Lineeir rrografftminf; and the Simplex Method 

The general  linear  programming problem may ba  statad  in the 

following form: 

n 
( 1)      maxlinlze     5~.   *. o^*: 

j«l      J    J 

n 
aubjeot to    V        a. .  a:., S b, ,   i  1,2, . ..,  m, 

xj ä 0,   j  1,2,...,  n. 

Kösasroh in the field  of linear prograi.itning was originally directed 

to developing genoral  msthods for  solving thia prcl/lsm.     Thts dövslop- 

nont of the simplex method by Daatssig JTjprovided a means for  solving; 

all   such problems in a relatively efficient and straightforward joaiinor. 

The ps-oooes is as follows« 

1.     Insqualitias aro convorted  to equivalent aqualities by adding 

Guitably doflned variables,    A so-oalled tableau arrangement is 

then secured and an initial   solution obtained which may be ox- 

pressed as 

(2) LI 
lei 

xi     Pj«   P0   , 

wiiar© P0 rapreaonts   the  stipulations vector -wl th ooroponents 

bi  ,   i»l,   2t..«4m,   anö the P^  are a suitably ac?.0!?tod   sat oi 

basi a vectors. 

i : 
i   «i 
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2. The elemonts in tha J-"1 coluam of the tableau may ba regarded 

ooeffioienta y^j for expressing Pj in terra« of the Pj: 

(3) 

as 

Dl 

7""     Yij    Pi«  Pj »       Jal.  2,..., n. 

3. An additional row is located with elements «j • o* nhore 

ro 
^4^    aJ " S yij    0i  »    J!»1.2,...,n. 

4. A criterion io supplied  for judging the solutions at any stage. 

If all zj - oj are non-fiegativo ,    an optimum has been aohieved} if 

ngt,   further imprcve.T.ent is possible, 
7 

5. A eysteraatio  prooodure is  provided for changlne; the basis and oon- 

tinuing the oaloulations until on optlnsuin ia aohisved. Tho prooedui'o 

consists of designating a vootor to oome into tho basis by reference 

to the z j ~ oj and a vector to be removed by reforanco to the retioa 

^i/yij. yij>0« 

Adjacent Extreme Point Methods 

Since tho simplex method was evolved numerous variants and alter- 

native procedures (such as the   dual method of Lemke [jo/) have beon 

devised.     In ooramon with the  simplex method the  prooadurea oonslot of 

movex.iont from an oxtrorae point to an adjacent extreme point of tho 

oonvox sot of öolutions.    The  following propertiea of the  solutioi; 

set are  therefore  orltiool  in all  such  prooedures:     (l) an  optimumc 

if it  exists,   is attainable  at an extreme  points     (2)  all   optliaa can 
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be generated from the oxtreme point optima.    By prooeedinß along 

adjacent extrena  point»  it is therefore possible to looate an optimum 

if one exists or to looate all optima,  if desired, li 

lixtonaion to Won-Linear Funotionals 

Initially it was thought that these methods (which aay be oharaoterieed 

RS   "adjacont extreme point raothods")  were applicable only to linear funotion- 

als with oonstraints givon by linear  inequalities.     It was  soor obuarvod, 

however,   that problems involving non-linear funotionals of the form 

(5)   r; wk 5 ark    x. Sk wk>o 

which were to be adnlmixod (subject to linear constraints) could bo reduced 

2/ to an equivalent linear programming problem. -*  The reduction waa achieved 

by introducing new variables 

(6) 
+ 
»k xic i 0 

into  the  oonstraints  and  into the functional.     Kvery optioiura of the  original 

(non-linear)  problen oould then be written as ar optimum of  the 

linear problem.     Adjacent extreme point methods  oould  therefore be  ussd  to 

locate tho minimum val jes  fc>P this particular class of convex functi onjd s. 

Clearly,   then,   the  power of adjaoent nxtremo point njathods extended 

to   this  class  of  convex funotionals.     It  was  thought.   howevors   that  problems 

involving minimisation of more general  classes of convex funotionals —  o.g». 

l/     See Charnas D 3 

2/    See [M 
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silniiclzatlon of »cal -lafinlte quadr^tle forma — could not be solved bj 

these isathods except in speciAl case«»    Although« Tor such types of 

functionals the optimum Is always on the boundary of the solution set,, 

it is not necessarily located at an extreme point» 

Subsequent research revealed that adjacent extreme point methods were 

capable of further extensiono    Chamee and Lemke [5] noted that problems 

involvins minimiaation of separable convex functionr-lo (and hence maxiraiza" 

tion of soparable concave functionals)  could be handled by these nsethodst, 

Solutions (to any desired accuracy) could be achieved by means of piecewise 

linear approximstionso     Dantzi^ [6] showed further that this approach could 

be transformed into an equiTalent fonnulationo    A different extreme point 

method <— the bounded variables technique [4] and [8] =>- co-jld then also 

be used to solve such problemso 

Still further extensions were soon forthcomingo    In [9] Alan Hoffman 

announced that the methods of Chames and Lemke for dealing with separable 

convex functionals had been extended to cover the general problem of mini' 

cdaing an arbitrary convex functional subject to linear inequ3litiss„     He 

suggested 0 aloOo  that this might be the limit to which the simplex method 

Eight be pushed in dealing with problems involving optimization of non= 

linear funatlonals eubject to linear inequalitieSo    Although full details of 

Dro  Hoffman's work are not yet available,, his findings fit rather naturally 

into the evolution of research directed to exploring the boundaries of ad- 

jacent extreme point icr-thods in solving linear prograiffirdng problemSa 

i 1 

| 
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Objactivaa 

This paper is intended to carry thas« explorationa a stage further. 

Spacifioally,  tha objectives are as follows»    One,  to  show that it Is 

possible to extend   adjacent extreme point methods to a muoh wider class  of 

non-linear  functionals — including funotionals which need not be either 

convex or oonoave.     Two,   to characterize the class of  such functional a which 

can bo embraced by thete methods»     Throa^  to indicata modificatione in th» 

simplex procedures  and oriUeria of optliuality which art» j : pessary to effect 

this oxtansion.    Four,  to doraarcete tho  limits of such axtenyions that raoy 

he raadvj and thus establish  tha po^er of adjacent extreme point aiethods 

(including the aimplox method) in dealing with optlnd.cat!on of arbitrary 

funotionals subjeot to linear constraints. 

i 

Definition of Looal  Star Optiina and Theorem 

In ordier for axtretne point rhfethods to  be effective (to t3ie desired 

degree of approximation)  it is cioarly neoasaary for one of the  following 

two conditions to holds     (l.)   the optima are at extreme points or  (2)  the 

problem must h» transforma-b.le into an equivalent one in which tho  oorrcs- 

poadin» optima of the  Original {noblem are at extreme  points of the  new 

problem..    Tha behavior  of U-.e  functional   at points other than extreme 

points  is irrelevant. 

Since  tho issue  is optiaiiation in the largo  thaao  conditionsj  though 

necessary,   are not sufficient.    Adjacent extreme point methods tr^y^  when 



-6- 

those conditions are fulfilled,  yl«ld only local optima.    It will he oon- 

veniont therefor« to dofine 

A Looal Star Optimu-ns An extreme point 
solution «hich v lolds a functional value 
at least as great as can be attained at 
any adjacent extreme point. 

Clearly then the following; theorem is valid« 

Theoronu    A naceaaary and  sufficient 
condition  that sd,iu.cent extren» point 
methods alw-ye yield -n optimum is that 
all  local  star optima shall   also be 
optima in the large. 

Illuatration 

The  following illuatration will  serve to  show what is involved and 

provide a basis  for  subaoquont discussion. Suppose that  the  objoctivo  la 

to  minimi »e  the nc<n-ilnear  functional , 

(rj F  (^i. yg."«. yn ^ 

subject to a sot cf linear  constraints.    It  is  possible  to approximate F 

to  suiy desired degree of accuracy by aeons of pieca*iee linear functionals, 

providod F may bo  dRcompoaod  by linear   transforniationa  into  a  sum of  funu- 

tions of individual variables.    Thus,   if F can  he written es 

(8) 

whore 

fi    W 

xi =  "5       *iic   yk 
TEST 
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than tiio £,     (.and hence F)  can bo «ipprüxiBÄted (to «ny deslrod  dograa) by 

piocewisa linear  funotionale. 

Consider,   for example,   the function fix)   sketched  In Figure I 

f(*) 

FicrasB I 

PIBCKliISS    LINJSAR    APPROXIMATION 
TO  CONCAVE    MW    CONVEX     FUNCTION 

3/ trhlch iß convex over cartain domnina ssn d oor  ^vo  ovar others.—    Tho piecawlse 

linear approxijna.tion      i» given by f (x).     Th« k's represant the   slopes of 

the  approximating lines and  the a's  represent  tho  initial  and   torminal  points 

of each auocecsive   segment. 

2J     Continuity is  not  assential. 
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Numeroua converd«nt devises ure available for securing the deoirod 

degree of approximation,,     Tüo following procedure jM-ovidea an example 

when f is differentiablo« The value   ~^   ic plotted against xe as in 

df 
cbi Figure II.    The area under   -r-   nay be used to represent f (x) and the 

histogram used to represent T{x).    Bp choosing appropriate 

&i'B (i-lpapoo.^n) the absolute difference I fW»jMl\iWl      majr be made 

as small as desired and a suitable approximatioa thus obtained„ 

,      ( 

FIGUKE II 

HISTOßfUM   «.PPrtQXlMrtTlON    TO   f(x) 

J 
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An&lytioally this approximation mj bo writton as  folloi»s. 

(0) x :£ cu 

r{x): k^   (x-a1)4-(k2 -  lc1)(x-a2) 

,     a^s JT S ag 

^1   (»-•l)'*"(,c2 T  lcl)(x-a2^ (k3-k2Kx-a3J,     a3 Sx iS a^ 

kj^   (x-aj^-»" (k2 - kjKx-ag)^-.,.+(kt3-!fs)(x-a6),   a6 £.x. 

An albsrnative expression is 

f       ^ 

(10)    7{*)~   ^   {kj- k^J (x-aj).  am »m+i 

whore k0a" 0, 

Setting 
xi  "  xi a x "  ai 

\riiere 

(11) 
xi   -   xi   - 0 

*1       ^i   *0; 

1^1, 2,...,G 

thio expression (10)  ruay be vnritton ase 

1    " 

(12) 

(*> = ^j-     UJ   -   ^-^   (XJ   -  X?   '   am5.   x^ -^ 
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?'odtfioation3 of Simplex Grltcri* and Prooadurea 

As the exaraple of the  prooedinp;  section Illustrates the  functional 

F may be decompoaod by llna&r transforraations  into a sum of functionals 

oach  involving only a single variable.     To each  such  functional a corresponding 

(approximating)  linear functional   may be obtained -/rhioh  is  to  be  optimized 

in an  onlarpred domain  involvinf, additional   linear equations and  speoifiad 

quadratic  conditions In non-negative variables. 

The linear  funotionals are of the  form 

( 

(13;       A n 

a -1,2,...,n   • 

The  additional     linear oquations which must   then bo adjoined  to  the 

oripirial   sot of restrictions is 

(14) 

xj - ('ji - xii^ 

-  <xj2 - xjl) 

a  ajl 

-aJ2 

xj -(»jn " xjn) =  Rjn 

Finally,   the following quadratic  oonditiona must to  aatisfiad 

(15) 

s 0 Xjl     Xjl 

XJ2    XJ2   :=0 

xJn    xjn -- 0 
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Th« oc-ordinRles «t extren.o  points,  howavxjr, are   coefficler.ta of 

linearly Indaptndent aeta of vcotors.-J   J3ut as the expressions in (14) 
vector coefficients of 

clearly  aiiow th</x4g    and XjB    are linear!,/ dependent.     Hence,   ass lonß 

as mov3;riarit is alciiK axtree»   points onl^jOither x^  «0    or x.:"   =0    ao 

that  thtj  quadratic  conditions  (1&)  are autonuttlciüly  satisfied  and the 

representation (13)   of the   functional   i« valid.     It ie  therefore  naoe^sary 

to  stipiilato that  thn   mijthod  of calculation  utilises  oxi ramo  poirts only. 

If ruixlni zation  la hoinf, nr.dartaken  and  if tho   functional   is convex 

over cortaln ranpog   the ordinary Zj -  Oj  improvement criteria must be 

modified because  of  the  possible  appoarer.ee  of  infinite values  for  the 

b/ functional-*.     To  fl^.  ideas  consider a  proble.a involving  a non-linear 

functional  which  ha» beon reduced   to the  form 

n-f-n1 

j-l 

(16)      aubjeot  to 

max.      ':- «j    Xj 

(a) 

3»i 
a^j   Xj    ™ b^   ,   i  l,2,...,m 

(a) Xj    ^0 

y    See    OJ 

ü/     See   rule   4,   socti oa 1.     Siailar  ren»rka  apply   if  rnjinisp-itation 
is  boinp; un'lertatreri   ar.d     tlie   t'iinctlonal   is  aonoavo      .ar  certain 
ranges. 

1 
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whorei  th«  rostriot'.ors (a) ar«  ««soclated with the  orl^iri&l  problem and 

the restrictlona (b)  are adjoined (aa in the illustration of the preced- 

ing section)  in the  process of  seourinp the approximation.    Note:  (l) 

that the object In the approxination is to  obtain a value which agrees 

with fj (XJ) on the oxtrone points,. (2)   that different numbers of 

subdivisions may be uaid  for each fj  (XJ)  and (3)  so long as movement is 

restricted   to ©xtroiae points the quadratic  couaition is automatically 

satisfied  and raay thus be  regarded as redundant. 

In more compact vector notation,   (16)  may he reexprassed a« 

Bfa* 
(17) fflax. J^2      0j     ^j 

subject to 

are 
where the fa,  D's and G's,   (as well as 0)  appropriately defined  column 

vectors of in and m'   rows rospeotivoly. 

Evidently any linearly independent  set of m tj's must bo associated 

with a sot of m'   linearly  independent Gj»s  if raovomont  Is  to bo restricted 

to  ajttre/ne points.     Hence  rule 5  of the   simplex routine which  stipulates 

replacement  of a Pj by a P^ to provide a  suoceedinr basis must be  modified 

so that * I     J j   can only be  replaced by a   /    ^   I   and/„   \ by a (rj    5 

2i»a optiisili'-y airlLarion lau^i than '** ^yllfiatl ^o- / , - R. > 0 tn" a.\\ pei*- 

fo 
Go 



Qy ArplylJan. tbrnsm mlvs to UM (ixtsad«d »m%f taovcnoot Is rvfltrlctod 

to «ocferaM poixAo of fch« orlstnal sot, lieooa« an optlnn» »hieb is attainwi 

for the enlarß«d prohlea of eaplogring ttoea« altered procedures and criteria 

is also an optlam tor the original profc&nu In general, only a local star 

optlnun is guaranteed,, llhon a local star optimum is also an optlraun in the 

large the procedures and criteria outlined above «ill suffice to locate this 

point irrespeetlve of the non-linear characteristics of the functionalo 

further Kxtenaioas 

The procedure is oapablo of further extension in particular applica- 

tions» Clearly all cases in rMcb local star optlaa are optiiaa in the large 

are oonqsrehenied by the above rules and criteria« In other eases it is 

possible to employ these neir criteria to reach various local star optima 

by starting at uidely separated extreme points» It may then be possible 

to establish that an optinnm optlnorva has been attained in the process» 

The ability to use adjacent extreme point methods (such as the 

simplex procedure) as a reneral procedure for solvinc all such problems 

is patently dependent on the developoant of systooatic and efficient means 

for traveraing local star optima o At present no such general techniques 

arm available0 The procedure outlined above is« bouever, aoenable to 

heuristic employment uhen a priori oonsideratione do not make it apparent 

that a local star optinnm is also an optima in the large« On attaininc 

a local star extreman it may be poseible to estafallBh directly that it is 

also an optimum optimonn« The current lack of general and efficient tncr> 

•real techniques demarcates, for the present* the noa-linear pouer of adjacent 

extreme point methods of linear progrannlngo 
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